Can your smart watch detect when you are becoming sick? A new study from Stanford indicates that this is possible.
By following 60 people through their everyday lives, Stanford researchers found that smart watches and other personal biosensor devices can help flag when people have colds and even signal the onset of complex conditions like Lyme disease and diabetes. “We want to tell when people are healthy and also catch illnesses at their earliest stages,” said Michael Snyder, senior author of the study.
RELATED: First Ever Quadriplegic Treated With Stem Cells Regains Motor Control in His Upper Body
Many of these deviations coincided with times when people became ill. Heart rate and skin temperature tends to rise when people become ill, said Snyder. His team wrote a software program for data from a smart watch called ‘Change of Heart’ to detect these deviations and sense when people are becoming sick. The devices were able to detect common colds and in one case helped detect Lyme disease–in Snyder, who participated in the study.
“I had elevated heart rate and decreased oxygen at the start of my vacation and knew something was not quite right,” said Snyder. After running a low-grade fever for several days, Snyder visited a physician who confirmed the illness. Snyder took the antibiotic doxycycline and the symptoms disappeared. Subsequent tests confirmed the presence of Lyme. The smart watch and an oxygen sensor were useful in detecting the earliest signs of illness.
This research paves the way for the smart phone to serve as a health dashboard, monitoring health and sensing early signs of illness, likely even before the person wearing it does.
CHECK OUT: Bold Trials to Kill Vicious Cancer Type is So Successful, FDA Will Fast Track to Patients
In addition to detecting illness, the study had several other interesting findings. Individuals with indications of insulin resistance and who are therefore are at high risk for Type 2 diabetes are often unaware that they have this risk factor. Personal biosensors could potentially be developed into a simple test for those at risk for Type 2 diabetes by detecting variations in heart rate patterns, which tend to differ from those not at risk.
Another interesting finding of the study is an effect that impacts many of us. The authors found that blood oxygenation decreases during airplane flights. Although this is a known effect, the authors were able to characterize it in greater detail than has been previously reported. Snyder’s team found that reduced blood oxygenation typically occurs for a large fraction of a flight and further demonstrated that this is associated with fatigue. “Many of us have had the experience of feeling tired on airplane flights,” Snyder said. “Sometimes people may attribute this to staying up late, a hectic work schedule, or the stress of travel. However, it is likely that cabin pressure and reduced oxygen also are contributors.”
“The information collected could aid your physician, although we can expect some initial challenges in how to integrate the data into clinical practice,” said Snyder. For example, patients may want to protect the privacy of their physiologic data or may want to share only some of it.
Time To Show Your Friends This Article: Click To Share